Meteor detection on spectrograms by means of computer vision

Chris Steyaert <csteyaert@gmail.com>

Automated detection - intro

Antonio Martínez at the IMC2022:

Narrow pass-band filtering technique for radio meteor automatic detection

Establishing a reliable method for detecting meteors in BRAMS project observations has proven to be an elusive issue. In this paper, a narrow filter-based technique is applied to a series of random spectrograms. The results of this proof-of-concept are promising

Fourteen years of Speciab 5 minutes records (VVS beacon) Felix Verbelen: 17 years, including .wav files

Automated detection - intro

Similar image analysis approach:

WGN, the Journal of the IMO 47:2 (2019) 55 Automated Spectrogram Analysis for Meteor Head Echoes

C. Powell

Typical cases

Resolution: time frequency

5 min 300 s 200 Hz 600 pixels 400 pixels

Minimum 'duration' of a reflection: 1 pixel = 0.5 s

Redu August 2023

Chris Steyaert

950 Hz

Reflections on lightning

Classification vs Object Detection

It is a cat

Specialist

Machine

Classification vs Object Detection

Found a meteorSpecialistMachine+True+False

-

-

Chris Steyaert

7

False

True

Preparing: convert to B&W

Color <> amplitude of the sound signal

Preparing: getting rid of the 1 minute lines

- 1 x 3 pixels interpolation
- Time calibration

Frequency summation

• Carrier removal

Chris Steyaert

10

Time summation

5a 202209210635CS sumf(t).png

Real time: trigger on amplitude threshold

Redu August 2023

Frequency summation

• Carrier removal

Redu August 2023

Chris Steyaert

12

Time summation

Real time: trigger on amplitude threshold

Redu August 2023

Chris Steyaert

13

Computer Vision

OpenCV (**Open** Source **C**omputer **V**ision Library) is an open source **computer vision** and **machine learning** software library.

The library has more than 2500 optimized algorithms, which includes a comprehensive set of both classic and state-of-the-art computer vision and machine learning algorithms. These algorithms can be used to detect and recognize faces, identify objects, etc

Thresholding

optimum threshold

Redu August 2023

Chris Steyaert

15

Removal of 'straight' lines

Carrier (horizontal line) removal worked well Possibility to remove plane streaks (not horizontal)?

Hough transform (patent 1962): identification of lines in an image

Bubble chamber: charged particles create ionisation track

Removal of 'straight' lines

Hough transform on spectrogram \rightarrow creates far too many lines Required: edge detection first (Canny, John - 1986)

17

Removal of 'straight' lines

- Do not detect 'vertical' lines = edges of meteors !
- Hough transforms allows 'gaps' (interruptions) in lines and mimimum length

Connected components

Connect pixels with one out of the 8 neighbours exceeding a threshold

Connected components

- Threshold 10, minArea 6
 - Threshold 20, minArea 6, Fillfactor 0.1, h/w 0.4
 - Threshold 20, minAread 6, Fillfactor 0.2, h/w 0.4

Connected components

Threshold 15, minArea 6, Fillfactor 0.2, h/w 0.4, Blur 3x2, linear regression slope, correlation, spread

Tuning the model

- Few cases → not representative
- Tune (manually) the parameters on a sufficient large training set 2023 Febr 16 – 18 (3 days, 493 meteors)
- Annotate true positives and false negatives
- Potential additional criteria: linear regression of the object pixels

Performance metrics

- Recall (sensitivity) = True Pos / (True Pos + False Neg) = 88.8 % (False Neg = non meteors misidentified as meteors)
- Any pattern in the False Neg (Feb 18) ?

Yes, 'far' from the central frequency Second pass: eliminate for $|\Delta y| > 60$, removes 17 False Neg, looses 3 True Pos

New recall = 96.8 %

Performance metrics

 Precision = True Pos / (True Pos + False Pos) = 92.6 % (False Pos = meteors not detected)

Tuning the model

- 'Final' set of parameters
 - Threshold
 - Canny edge (2)
 - Hough lines (4)
 - Blurring
 - -h/w
 - Correlation coefficient
 - Area
 - Covariance (2)
 - Δf

• Grid search / random search

Advantage of automated detection

- Consistency
- No `positivity bias'
- Analyse vast volumes
- No special hardware required

 This study: only tuned for non-shower meteors (analyse Jan 5 – Apr 15, September)

Opportunities of automated detection

- Counts weighted by duration
- Counts weighted by (audio) power

 $dB_i = 10 \log P_i \quad P_i = 10^{\frac{dB_i}{10}} P_{comp} = \sum_i P_i$ $dB_{comp} = 10 \log P_{comp}$

Redu August 2023

Opportunities of automated detection

- Power distribution: equivalent of magnitude distribution
- 'Radio' population index: discern sporadics from stream meteors
- With stable frequency or known carrier frequency: Doppler shift of centroid → distribution of velocity drifts, stream vs sporadics

Environment and packages

Other setups

- Source code available 'as is' to try yourself (tuned on mainly sporadic activity, probably performs less well on streams)
- A Felix Verbelen recording, partially tuned:

Thanks to / acknowledgments

- Antonio Martínez Picar
- **Pierre Terrier**
- **Cis Verbeeck**
- Felix Verbelen
- Aegide Steyaert

Brussels, Brussels Region, Belgium · Contact info

