

Kero, J., Szasz, C., Nakamura, T., Meisel, D. D., Ueda, M., Fujiwara, Y., Terasawa, T., Miyamoto, H., and Nishimura, K. (2011). First results from the 2009-2010 MU radar head echo observation programme for sporadic and shower meteors: the Orionids 2009. *MNRAS, 416:2550–2559.* 







Orionids ejected from comet 1P/Halley in 1265: RA=94.6°,  $\delta$ =-15.4°



Comparison with the 60 best photographic and 17 video Orionoids of the IAU Meteor Data Center (Lindblad and Porubcan, CAOSP 29, p 77, 1999)



Comparison with the 60 best photographic and 17 video Orionoids of the IAU Meteor Data Center (Lindblad and Porubcan, CAOSP 29, p 77, 1999)

Count rate:



Count rate:



Count rate dependence of radiant elevation agree well with visual observations, e.g.,

• Zvolankova (1983): Dependence of the observed rate of meteors on the Zenith distance of the radiant

Jenniskens (1994): Meteor stream activity I. The annual streams

Count rate:

MU radar ZHR:



Count rate dependence of radiant elevation agree well with visual observations, e.g.,

• Zvolankova (1983): Dependence of the observed rate of meteors on the Zenith distance of the radiant

Jenniskens (1994): Meteor stream activity I. The annual streams

## **Estimating MU radar collection area**



# Distribution of 1000 meteors

#### MU radar antenna gain pattern



## **Estimating MU radar collection area**



## No of meteors normalized by beam area



#### **MU radar collection area**



**Figure 7.** Estimated meteor collection area as a function of meteor radar cross-section (RCS). The blue curve is calculated using a probability of detection approach and assuming a uniform flux of meteors as a function of distance from the bore axis. The red curve is based on an integration of the antenna radiation pattern.

#### **Differential MU meteor flux**



The ratio of the differential RCS distributions is 1.32 ± 0.11

#### **Differential MU meteor flux**



The ratio of the differential RCS distributions is 1.32 ± 0.11

If the RCS mass dependence of Orionids and other meteoroids is the same, the ratio of the mass distribution indices is also 1.32 ± 0.11

#### **Cumulative MU meteor flux**



# Comparison with meteor trail and visual obs.



## Comparison with meteor trail and visual obs.



#### **Conclusions from the Orionid observations**

- > 600 of 10,000 meteors were Orionids
- The Orionid detection rate reached 50  $\pm$  7 h<sup>-1</sup>
- The detection rate was consistent with the radiant altitude exponent of 1.47 derived for visual meteors by Zvolankova (1983)
- The resulting  $ZHR_{MU}$  was 50  $\pm$  7 h<sup>-1</sup> except during Oct. 20 22:00 JST to Oct. 21 02:00 JST when it was enhanced by a factor of 2  $\pm$  0.4
- The estimated MU collection area varies from about 1 to 1,000 km<sup>2</sup> within the RCS span of the detected meteors
- The zenithal equivalent cumulative flux of Orionids is  $\approx 1 \text{ km}^{-2}\text{h}^{-1}$ while the sporadic flux peaked at  $\approx 30 \text{ km}^{-2}\text{h}^{-1}$