

HIGH-POWER LARGE-APERTURE (HPLA) VS SPECULAR METEOR RADAR OBSERVATIONS

Johan Kero and Daniel Kastinen Swedish Institute of Space Physics (IRF), Kiruna, Sweden with credits to EISCAT and Kyoto University MU radar staff

METEOR HEAD AND TRAIL ECHOES

HIGH-POWER LARGE-APERTURE RADARS

Depicted here: Incoherent scatter radar systems in operation in 2019 (Craig Heinselman)

Radar	Geographical	Frequency	Antenna	Peak power and	
	location	[MHz]	and aperture	max duty cycle	
ALTAIR	Kwajalein Atoll	160	Parabolic dish:	6MW, $5%$	
	Marshall Islands	422	$1,660\mathrm{m}^2$		
AMISR	Alaska, USA	440	Phased array:	2MW, $10%$	
	Resolute Bay, Canada		$715 \mathrm{m}^2$		
Arecibo	Puerto Rico	430	Spherical dish:	2MW, $6%$	
			$73,\!000\mathrm{m}^2$		
EISCAT UHF	Northern	930	Parabolic dish:	$2\mathrm{MW},12\%$	
	Scandinavia		$800 \mathrm{m}^2$		
EISCAT VHF	Northern	224	Parabolic cylinder dish:	$1.6\mathrm{MW},12\%$	
	$\operatorname{Scandinavia}$		$4,\!800\mathrm{m}^2$		
EISCAT Svalbard Radar:	${ m Spitsbergen}$	500	Parabolic dishes:	1MW, $12%$	
\mathbf{ESR}			$800 { m m}^2$, 1,400 { m m}^2		
EISCAT 3D	Northern	233	3-5 phased arrays:	5-10MW, 25%	
	Scandinavia		$3-5 \ge 3,850 \text{m}^2$		
Jicamarca	Peru	49.9	Phased array:	1.5 MW, 6%	
			$85,000\mathrm{m}^2$		
MAARSY	Norway	53.5	Phased array:	0.8MW, 5%	
			$6{,}300\mathrm{m}^2$		
Millstone Hill	Massachusetts	440	Parabolic dishes:	2.5 MW, 6%	
	USA		$1,\!660,3,\!525\mathrm{m}^2$		
MU	$\operatorname{Shikaragi}$	46.5	Phased array:	1MW, $5%$	
	Japan		$8,300\mathrm{m}^2$		
PANSY	Showa Station	47	Phased array:	0.5 MW, 5%	
	Antarctica		18,000		
Sondrestrøm	Greenland	1,290	Parabolic dish:	3MW, $3%$	
			800		

Kero et al. 2019

Figure 2.6 from Nygrén, T. (1996), Introduction to incoherent scatter measurements, 1st ed., Invers, Sodankylä, Finland

HEAD ECHO ASPECT INDEPENDENCE

Kero et al., 2008

METEOROID VELOCITY

METEOROID MASS DETERMINATION

Photometric mass (optical):

Ionization mass (radar):

electrons per unit trail length

atomic mass

ionization probability

Dynamic mass (conservation of momentum):

METEOROID MASS DETERMINATION

Photometric mass (optical):

Ionization mass (radar):

electrons per unit trail length

$$qv\mu = \beta \frac{dm}{dt} \qquad \Longrightarrow \qquad M_q = \int \frac{q\mu V}{\beta} dt$$

atomic mass

ionization probability

- role of fragmentation
- luminous efficiency (spectral lines, bandpass specific etc.)

+ ionization probability

- role of fragmentation
- electron distribution near meteoroid

Dynamic mass (conservation of momentum):

MU radar (Middle and Upper atmosphere)

103 m

Monostatic coherent pulse Doppler radar Antenna aperture: 8330 m2 Pulse length: 1 – 500 μs VHF 46.5MHz, 1MW output Beam width: 3.6 deg 475 antennas

METEOR HEAD ECHO DATA @ MU

Time series of 32 bit complex voltages:

25 channels85 ranges332 times per second

About 20 GB/hour

METEOR HEAD ECHO DATA @ MU

2009-07-28 05:33:09 JST

Transmission of $26x6\mu$ s: 156 μ s pulse Interpulse period: 3.12 ms Range gate: 6 μ s ≈ 900 m

SOUTH

Kero et al., 2012

1000 METEORS IN THE MU BEAM

MU METEOR RADIANTS

106139 meteors

Kero et al., 2012

MU METEOR RADIANT DENSITY

106139 meteors

Kero et al., 2012

The appearance of overdense head echo condition for EISCAT observation

Pellinen-Wannberg (2005)

Location	Tro	omsø	-				Code	Bau	s t	ampli	ng	Ran	ge	Time	Plasma	Raw
Band	VHF	UHF		I	vame		[bit]	lengt [μs]		rate [µs]		spa [kn	an n]	resolution [s]	line	data
Transmitter frequencies	222.8 - 225.4 MHz	926.6 - 930.5 MHz		n	nanda		61	2.4	1	1.2		19–2	209	4.8	-	Yes
Transmitter	1 klystron	2 klystrons			EIS	SCA	T Scie	T UHF RA	Asso dar	ciati	on					
Peak power	1.6 MW	2 MW	50	Produce	d@EISCAT-	T, 29-00	SW, uhf, ma st-2016	nda, 29 Oct Not for public	ober 2016 ation - see	Bules-of-the-	road	-10 ¹⁴				199
Average power	200 kW	250 kW	40								1 		azi ele	muth 257 vation 37	.1° 0°	
Pulse	1 μs - 2.0	1 µs - 2.0	- 30	¹⁰								ŀ			.0	
duration	ms	ms										-10" 문	rar	ige 164 ki	m	
Minimum interpulse	1.0 ms	1.0 ms	titude (km)									ctron Densi				
Phase coding	Binary	Binary	িৰ								-	لي ش`10".				1
Receiver frequencies	214.3- 234.7 MHz	921.0- 933.5 MHz		00 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10							· · · · · · · · · · · · · · · · · · ·	10*				
Receiver	Analog	Analog	25	00:00	03:00 0	6:00	09:00 12	00 15:00	18:00	21:00	00:00)			A and the	- ARK
System temperature	250-350 K	90-110 K	30)0										B		
Antenna	Four 30×40 m steerable parabolic cylinders	32 m steerable parabolic dish	- 25 20 Jan anueters 20 Jan anueters 21 Jan anueters 22 Jan anueters 23 Jan anueters 24 Jan anueters 25 Jan anueters 26 Jan anueters 27 Jan anueters 29 Jan anueters 20 Jan an								- Fower (Tokw)	Phasepushing () System Temperatur Elevation(*) Azimuth(*)				
Feed system	Line feed, 128 crossed dipoles	Cassegrain	- 2 10	;0	r nr l.						·····	e (K)	11.9		<u></u>	
Gain	46 dBi	48.1 dBi	_	۰ <u>ا</u>										Annual Based in 2		
Polarisation	Circular	Circular	-	00:00	03:00 0	6:00	09:00 12 UNIVERS	00 15:00 ALTIME	18:00	21:00	00:00	1			and the second	and the state

Middle Atmosphere Alomar Radar System-MAARSY

24

Experiment	specification	Hardware Specification				
Pulse Repetition Freq.	1000 Hz	Frequency	53.5 MHz			
Pulse coding	16-bit complementary	Transceiver-modules	433			
Pulse length	4.8 km (160 μs)	Power	~866 kW			
Duty Cycle	3.2%	Antennas	433 3-element (crossed) Yagi			
Range Resolution	300 m		Antennas			
Start Range	49800 m	Gain	33.7 dBi			
End Range	134700 m	Aperture	~6300 m ²			
Beam direction	Vertical (zenith	Beam width	3.6°			
	pointing)	Beam steering capabilities	freely steerable with 35° off-zenith			
		Receiver channels	16			

MAARSY on Andöya, IAP Kühlungsborn

DUAL FREQUENCY RADAR OBSERVATIONS

time / s

25

Yes

Software

@ github.com/danielk333

metecho	Meteor head echo analysis	[transferring]
htpl	Radar hard target processing lib	[refactoring]
pyorb	Kepler to cartesian elements	on PyPI
pyant	Radar antenna radiation patterns	on PyPI
ablate	Ablation model interfaces	[ongoing]
pyod	Orbit determination interfaces	[ongoing]
dasst	Meteoroid stream simulations	[Only prototype]

MU HIGH-ALTITUDE HEAD ECHOES

Kastinen & Kero (2022)

MU HIGH-ALTITUDE HEAD ECHOES

Kastinen & Kero (2022)

MU HIGH-ALTITUDE HEAD ECHOES

Kastinen & Kero (2022)