
Development of evaporation and melting models 
for meteor phenomenon in the continuum regime

B. Dias A. Turchi    A. Frezzotti T. Magin

Annual BRAIN-BE meeting : METRO
29 November 2016, Brussels, Belgium



The meteor phenomena … inspiration for space exploration

50 -100 tonnes of meteor
enter in the earth’s atmosphere per day

 Velocity : 11.2 - 72.5 km/s
 Composition: FeO; MgO; Ca; SiO2, …
 Size: radius 1 µm – 10 m

Artistic View Meteor [MidnightWatcher’s]
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Artistic illustration of the Apollo’s re-entry (NASA)

Meteor ablation source of inspiration
for ablative heat shields 

 Velocity : 7.9 - 14 km/s
 Composition TPS: C(gr), SiO2, C6H5-OH
 Size: radius 0.5 m – 2 m



The meteor phenomena … it melts (heat shields don’t)

50 -100 tonnes of meteor
enter in the earth’s atmosphere per day

 Velocity : 11.2 - 72.5 km/s
 Composition: FeO; MgO; Ca; SiO2, …
 Size: radius 1 µm – 10 m

Artistic View Meteor [MidnightWatcher’s]
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Oxides at high temperatures 
(surface temperature > fusion temperature) 




State-of-the-art model for meteor entry phenomena

Trajectory:

Vondrak et al, Atmos. Chem. Phys., 2008
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State-of-the-art model for meteor entry phenomena

Trajectory:

Mass Balance:

Vondrak et al, Atmos. Chem. Phys., 2008
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State-of-the-art model for meteor entry phenomena

Trajectory:

Mass Balance:

Energy Balance:

Vondrak et al, Atmos. Chem. Phys., 2008
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State-of-the-art model for meteor entry phenomena

Trajectory:

Mass Balance:

Energy Balance:

Vondrak et al, Atmos. Chem. Phys., 2008

no prediction of the electron concentration
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Objectives
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Detailed flow analysis during a meteor entry based on a 
aerospace engineering approach including melting

Focus of the study:
• Continuum flow

• Single fragment meteor

• Geometry: sphere

• Forward stagnation streamline
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Flow field modeling 

 High entry velocity (11.2 –72.5 km/s)
 High temperatures (e.g. 120,000 K): thermal non-equilibrium effects
 Complex chemical reactions (e.g. dissociation and ionization) 
 High radiative field: computational expensive

1 Soucasse et al, JQSRT (2016) 5



Flow field modeling

Hybrid Statistical Narrow Band (HSNB) method1

 Accurate description
 Low CPU cost for coupling 
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Flow field modeling

Hybrid Statistical Narrow Band (HSNB) method1

 Accurate description
 Low CPU cost for coupling 
 Atomic line treated by Line-by-Line method 

 High entry velocity (11.2 –72.5 km/s)
 High temperatures (e.g. 120,000 K): thermal non-equilibrium effects
 Complex chemical reactions (e.g. dissociation and ionization) 
 High radiative field: computational expensive

Assumptions:
• Atmospheric Gas reactions: non equilibrium

• Ablations products: frozen

• Only air radiation mechanisms considered

1 Soucasse et al, JQSRT (2016) 5
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• Species i mass balance ( O2, N2, …, FeO, Fe, SiO2, MgO, …):

Ablation Model Surface Mass Balance (SMB)
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Mass removal due to evaporation : Mass removal due to mechanical forces :
• Tangential velocity1:

1 Bethe et al, Journal of the Aerospace Sciences Vol.26, No.6 (1959)
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Ablation Model Surface Mass Balance (SMB)

Mass removal due to evaporation : Mass removal due to mechanical forces :
• Tangential velocity:
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• Elements k mass balance ( O, N, …, Fe, Si, Mg, …):
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Ablation Model Surface Mass Balance (SMB)

Mass removal due to evaporation : Mass removal due to mechanical forces :
• mass removal :

melt meltm vρ=

• evaporation mass blowing rate, 𝑚̇𝑚:
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• yk,w :  gaseous mixture at the wall computed by chemical equilibrium
• Ji,k : elemental mass diffusion computed by CFD

+
Total mass removal
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• Energy Balance:

Ablation Model Surface Energy Balance (SEB)
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A surface composed by multiple constituents
Classification Composition Elemental composition

Simplify
Ordinary Chondrite

SiO2: 0.606 Si:    0.232

MgO: 0.394 Mg: 0.152

O:   0.616

Meteor surface properties

How to compute yk,w for a multi element surface?1

1 First addressed by Milos et al, AIAA 97-0141 (1997)
2 Developed by Scoggins et al, Combust. Flame 2015
3 Extension Gibbs Function Continuation(GFC) by Pope et al, FDA 03-02 (2003)

Multiphase Equilibrium solver2

 Multiphase Gibbs function continuation (MPGFC)3

 Impose any linear constraint to the system:
𝑥𝑥𝑆𝑆𝑆𝑆
𝑥𝑥𝑀𝑀𝑀𝑀

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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Multi species surface equilibrium
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Gaseous Elemental mole fraction vs Temperature, 0.09 atm;
constrained,          unconstrained equilibrium 9
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Meteor ablation flow solver
Stagnation-Line Code CFD Solver 1

 1D Stagnation-Line solver in spherical coordinates
 Cell-centered finite volume
 Roe’s Riemann solver
 Fully implicit time-integration

Mutation++ library 2 

 Thermodynamic properties 
 Transport properties
 Air chemistry 
 Multiphase Equilibrium Solver31 Munafò et al, Phys. Fluids 26, 097102 (2014)

2 Scoggins et al, AIAA 2014-2966 (2014)
3 Scoggins et al, Combust. Flame 162(12):4514-4522 (2015)
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Surface mass balance evaporation coupled



Meteor ablation material solver
Melting material solver

 1D in spherical coordinates
 Finite difference method
 Unsteady solver 
 Expicit time integration
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Variable thermodynamic properties:
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Comparisson with analytical solution1
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t = 20, 40, …, 100 s
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1 Carslaw, H. S., and J. C. Jaeger. 1959. Conduction of heat in solids. Oxford: Clarendon Press. 
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Flow/ material solver coupling strategy 

Simulation conditions:

 Meteor composition in the atmosphere:

‒ Simplify Ordinary Chondrite 

(SiO2: 0.65, MgO: 0.35) meteor, 1 cm radius

 Entry velocity: 15 km/s
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Flow/ material solver coupling strategy 
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Initial 
conditions

Flow Solver
60 km

Implicit coupling approach:



Flow/ material solver coupling strategy 

14

Initial 
conditions

Flow Solver
60 km

Melting material solver
from 60 to 59 km (0 to 0.06s)

flow radq q+

evapm

Implicit coupling approach:



Flow/ material solver coupling strategy 

14

Initial 
conditions

Flow Solver
60 km

Melting material solver
from 60 to 59 km (0 to 0.06s)

flow radq q+

evapm

Implicit coupling approach:

Flow Solver
59 km

wallT

new
radius



Flow/ material solver coupling strategy 
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Initial 
conditions

Flow Solver
60 km

Melting material solver
from 60 to 59 km (0 to 0.06s)

flow radq q+

evapm

Implicit coupling approach:
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Heat flux ramping: Evaporation rate ramping:



Flow field at 60 km
Temperature along stagnation streamline Species diffusion along stagnation streamline
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Flow field at 50 km
Temperature along stagnation streamline Species diffusion along stagnation streamline
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almost constant

no increase of temperature in the core

Material response from 60 to 50 km (temperature)

Temperature distribution along the material Temperature at the surface and at the core
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t = 0, …. ,  0.6 s

Surface recession 
of 0.75 cm 
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Material response from 60 to 50 km (evaporation and melting front)

Animation of moving fronts Melt layer




Heat flux and mass removal from 60 to 50 km

Heat flux contribution to the material Mass removal due evaporation and 
mechanical forces
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Conclusion

 Tools developed at VKI for spacecraft entries  have been 
adapted and applied to meteor entry applications:

• The ablative boundary condition was developed with an approach similar to re-entry vehicles

• Melting phenomenon was included to the gas-surface interaction model

• The material and flow solver were coupled through an implicit procedure

 Important results have been obtained using engineering tools:

• The initial conditions for the flow solver are very important

• The melting layer remains very thin due to a high mass removal 

• Decrease of the melting layer along the trajectory

• The major source of mass lost is through mechanical removal

• Radiative heat flux is much smaller than convective contribution

20



On-going work
• Study of the meteor ablation in the Argo solver2

and comparison with experimental results

21

• Development of DSMC tools for
rarefied regimes3 (Sparta simulation) (Federico talk)

1 Zavalan, VKI RM (2016)
2 Schrooyen, PhD thesis (2016)
3 Federico Bariselli, PhD student

• Experimental studies of real meteors in the Plasmatron1 

(Thierry talk)





Development of evaporation and melting models 
for meteor phenomenon in the continuum regime

B. Dias T. Magin
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