Development of evaporation and melting models for meteor phenomenon in the continuum regime

<u>B. Dias</u> A. Turchi A. Frezzotti T. Magin

Annual BRAIN-BE meeting : METRO 29 November 2016, Brussels, Belgium

The meteor phenomena ... inspiration for space exploration

Artistic View Meteor [MidnightWatcher's]

50 -100 tonnes of meteor enter in the earth's atmosphere per day

- Velocity : 11.2 72.5 km/s
- **Composition**: FeO; MgO; Ca; SiO₂, ...
- Size: radius 1 μm 10 m

Artistic illustration of the Apollo's re-entry (NASA)

Meteor ablation source of inspiration for ablative heat shields

- Velocity : 7.9 14 km/s
- Composition TPS: C(gr), SiO₂, C₆H₅-OH
- **Size**: radius 0.5 m 2 m

The meteor phenomena ... it melts (heat shields don't)

Artistic View Meteor [MidnightWatcher's]

50 -100 tonnes of meteor enter in the earth's atmosphere per day

- Velocity : 11.2 72.5 km/s
- **Composition**: FeO; MgO; Ca; SiO₂, ...
- Size: radius 1 μm 10 m

Oxides at high temperatures

(surface temperature > fusion temperature)

Trajectory:

$$\frac{dV}{dt} = -\Gamma V^2 \frac{3\rho_a}{4\rho_m R} + \rho_m g$$

Trajectory:

Mass Balance:

$$\frac{dV}{dt} = -\Gamma V^2 \frac{3\rho_a}{4\rho_m R} + \rho_m g$$
$$\frac{dm_i}{dt} = \gamma p_i S \sqrt{\frac{\mu_i}{2\pi k_B T}}$$

Vondrak et al, Atmos. Chem. Phys., 2008

 $\frac{dV}{dt} = -\Gamma V^2 \frac{3\rho_a}{4\rho_m R} + \rho_m g$ Trajectory: $\frac{dm_i}{dt} = \gamma p_i S \sqrt{\frac{\mu_i}{2\pi k_B T}}$ Mass Balance: $\frac{1}{2}\pi R^2 V^3 \rho_a \Lambda = 4\pi R^2 \varepsilon \sigma (T^4 - T_{env}^4) + \frac{4}{3}\pi R^3 \rho_m C \frac{dT}{dt} + L \frac{dm}{dt}$ Energy Balance: Vondrak et al, Atmos. Chem. Phys., 2008 140 120 100 Altitude [km] 80 60 40 20 0 0.4 0.8 1.2 1.6 2.0 3.2 2.4 2.8 time [s]

Objectives

Detailed flow analysis during a meteor entry based on a aerospace engineering approach including melting

Focus of the study:

- Continuum flow
- Single fragment meteor
- Geometry: sphere
- Forward stagnation streamline

• Flow field Modeling

• Gas-surface interaction modeling for meteors

• Numerical tools & results

• Conclusion and Future Work

Outline

• Flow field modeling

Gas-surface interaction modeling for meteors

• Numerical tools & results

Conclusion and Future Work

- High entry velocity (11.2 –72.5 km/s)
- High temperatures (*e.g.* 120,000 K): thermal non-equilibrium effects
- Complex chemical reactions (e.g. dissociation and ionization)
- High radiative field: computational expensive

- High entry velocity (11.2 –72.5 km/s)
- High temperatures (e.g. 120,000 K): thermal non-equilibrium effects
- Complex chemical reactions (e.g. dissociation and ionization)
- High radiative field: computational expensive

Hybrid Statistical Narrow Band (HSNB) method¹

- Accurate description
- Low CPU cost for coupling
- Atomic line treated by Line-by-Line method

Assumptions:

- Atmospheric Gas reactions: non equilibrium
- Ablations products: frozen
- Only air radiation mechanisms considered

- High entry velocity (11.2 –72.5 km/s)
- High temperatures (e.g. 120,000 K): thermal non-equilibrium effects
- Complex chemical reactions (e.g. dissociation and ionization)
- High radiative field: computational expensive

Hybrid Statistical Narrow Band (HSNB) method¹

- Accurate description
- Low CPU cost for coupling
- Atomic line treated by Line-by-Line method

• Gas-surface interaction modeling for meteors

Numerical tools & results

Conclusion and Future Work

Ablation Model Surface Mass Balance (SMB)

Mass removal due to evaporation :

• Species i mass balance (O₂, N₂, ..., FeO, Fe, SiO₂, MgO, ...):

$$J_{i,w} + \sum_{r=1}^{N_r} \omega_i^r = (\rho u)_w y_{i,w} \quad i=1,...,N_s$$
(1)

Mass removal due to mechanical forces :

• Tangential velocity¹:

$$v = \tau_{flow/melt} \int_{0}^{\delta} \frac{dr}{\mu(T)} + \frac{1}{R} \frac{\partial P}{\partial \theta} \int_{flow/melt}^{\delta} \frac{r}{\mu(T)} dr$$

¹ Bethe et al, Journal of the Aerospace Sciences Vol.26, No.6 (1959)

Ablation Model Surface Mass Balance (SMB)

Mass removal due to evaporation :

• Elements k mass balance (O, N, ..., Fe, Si, Mg, ...):

$$\sum_{i=1}^{N_s} \sigma_{i,k} \frac{M_k}{M_i} (1) \Longrightarrow J_{i,k} + \dot{m}_{evap} \ y_{k,s} = (\rho u)_w \ y_{k,w} \quad k=1,...,\epsilon$$

Mass removal due to mechanical forces :

• Tangential velocity:

$$v = \tau_{flow/melt} \int_{0}^{\delta} \frac{dr}{\mu(T)} + \frac{1}{R} \frac{\partial P}{\partial \theta} \int_{flow/melt}^{\delta} \frac{r}{\mu(T)} dr$$

Ablation Model Surface Mass Balance (SMB)

Mass removal due to evaporation :

• evaporation mass blowing rate, *m*:

$$\dot{m}_{evap} = \frac{J_{i,k}}{(y_{k,w} - y_{k,s})}$$

- $y_{k,w}$: gaseous mixture at the wall computed by chemical equilibrium
- J_{i,k}: elemental mass diffusion computed by CFD

Mass removal due to mechanical forces :

• mass removal :

$$\dot{m}_{melt} = \rho_{melt} v$$

Ablation Model Surface Energy Balance (SEB)

• Energy Balance:

$$q_{convective} + (\dot{m}_{evap} + \dot{m}_{melt})h_c + q_{rad,in} = q_{rad,out} + \dot{m}_{evap}h_w + k\frac{\partial T}{\partial r} + \dot{m}_{melt}h_c$$

A surface composed by multiple constituents

Classification	Composition	Elemental composition
Simplify Ordinary Chondrite	SiO ₂ : 0.606	Si: 0.232
	MgO: 0.394	Mg: 0.152
		O: 0.616
	Meteor surface properties	

How to compute $y_{k,w}$ for a multi element surface?¹

Multiphase Equilibrium solver²

- Multiphase Gibbs function continuation (MPGFC)³
- Impose any linear constraint to the system:

$$\frac{x_{Si}}{x_{Mg}} = const$$

¹ First addressed by *Milos et al*, AIAA 97-0141 (1997)

² Developed by *Scoggins et al*, Combust. Flame 2015

³ Extension Gibbs Function Continuation(GFC) by *Pope et al*, FDA 03-02 (2003)

Multi species surface equilibrium

—— constrained, –•– unconstrained equilibrium

• Flow field Modeling

Gas-surface interaction modeling for meteors

• Numerical tools & results

Conclusion and Future Work

Meteor ablation flow solver

¹ Munafò et al, Phys. Fluids 26, 097102 (2014)

- ² Scoggins et al, AIAA 2014-2966 (2014)
- ³ Scoggins et al, Combust. Flame 162(12):4514-4522 (2015)

Meteor ablation material solver

convected enthalpy

Hot Gas

Melt layer

Material

Melt layer

Material

enthalpy of the melt removal

melt removal due mechanical forces

Comparisson with analytical solution¹

¹ Carslaw, H. S., and J. C. Jaeger. 1959. *Conduction of heat in solids*. Oxford: Clarendon Press.

Flow field at 60 km

Flow field at 50 km

Material response from 60 to 50 km (temperature)

Material response from 60 to 50 km (evaporation and melting front)

Animation of moving fronts

Melt layer

Heat flux and mass removal from 60 to 50 km

Gas-surface interaction modeling for meteors

• Flow field Modeling

Numerical tools & results

• Conclusion and Future Work

Conclusion

- Tools developed at VKI for spacecraft entries have been adapted and applied to meteor entry applications:
 - The ablative boundary condition was developed with an approach similar to re-entry vehicles
 - Melting phenomenon was included to the gas-surface interaction model
 - The material and flow solver were coupled through an implicit procedure

- Important results have been obtained using engineering tools:
 - The initial conditions for the flow solver are very important
 - The melting layer remains very thin due to a high mass removal
 - Decrease of the melting layer along the trajectory
 - The major source of mass lost is through mechanical removal
 - Radiative heat flux is much smaller than convective contribution

On-going work

• Study of the meteor ablation in the Argo solver² and comparison with experimental results

• Development of DSMC tools for rarefied regimes³ (Sparta simulation) (Federico talk)

 Experimental studies of real meteors in the Plasmatron¹ (Thierry talk)

¹ Zavalan, VKI RM (2016)
² Schrooyen, PhD thesis (2016)
³ Federico Bariselli, PhD student

Development of evaporation and melting models for meteor phenomenon in the continuum regime

<u>B. Dias</u> T. Magin

Acknowledgment:

- Federico Bariseli, Alessandro Turchi, Aldo Frezzotti, Luiza Zavalan, J.B. Scoggins
- the Belgian Research Action through Interdisciplinary Networks (BRAIN) for the METRO: Meteor TRajectories and Origins project

